Engineering Functional Quantum Algorithms
نویسندگان
چکیده
Suppose that a quantum circuit with K elementary gates is known for a unitary matrix U , and assume that U is a scalar matrix for some positive integer m. We show that a function of U can be realized on a quantum computer with at most O(mK + m log m) elementary gates. The functions of U are realized by a generic quantum circuit, which has a particularly simple structure. Among other results, we obtain efficient circuits for the fractional Fourier transform.
منابع مشابه
BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملDigitally Excited Reconfigurable Linear Antenna Array Using Swarm Optimization Algorithms
This paper describes the synthesis of digitally excited pencil/flat top dual beams simultaneously in a linear antenna array constructed of isotropic elements. The objective is to generate a pencil/flat top beam pair using the excitations generated by the evolutionary algorithms. Both the beams share common variable discrete amplitude excitations and differ in variable discrete phase excitations...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کامل